Published in

Elsevier, Acta Materialia, (74), p. 18-29, 2014

DOI: 10.1016/j.actamat.2014.04.028

Links

Tools

Export citation

Search in Google Scholar

High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To study the effect of γ′ precipitate size on the deformation behaviour of a polycrystalline nickel-based superalloy, model microstructures with a unimodal γ′ size distribution were developed and subjected to loading experiments at 750 °C. Neutron diffraction measurements were carried out during loading to record the elastic lattice strain response of the γ and γ′ phase. A two-site elasto-plastic self-consistent model (EPSC) assisted in the interpretation of the elastic lattice strain response. In addition, the microstructures of the deformed specimens were analysed by (scanning) transmission electron microscopy (STEM). Excellent agreement was found between the EPSC and STEM results regarding a joint deformation of the γ and γ′ phase in the fine γ′ microstructures and for low plastic strains in the medium γ′ microstructures. With increasing γ′ size and increasing degree of plastic deformation, both experimental methodologies revealed a tendency of the two phases to deform independently.