Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(13), 2023

DOI: 10.1038/s41598-023-35296-0

Links

Tools

Export citation

Search in Google Scholar

Prediction of protein subplastid localization and origin with PlastoGram

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDue to their complex history, plastids possess proteins encoded in the nuclear and plastid genome. Moreover, these proteins localize to various subplastid compartments. Since protein localization is associated with its function, prediction of subplastid localization is one of the most important steps in plastid protein annotation, providing insight into their potential function. Therefore, we create a novel manually curated data set of plastid proteins and build an ensemble model for prediction of protein subplastid localization. Moreover, we discuss problems associated with the task, e.g. data set sizes and homology reduction. PlastoGram classifies proteins as nuclear- or plastid-encoded and predicts their localization considering: envelope, stroma, thylakoid membrane or thylakoid lumen; for the latter, the import pathway is also predicted. We also provide an additional function to differentiate nuclear-encoded inner and outer membrane proteins. PlastoGram is available as a web server at https://biogenies.info/PlastoGram and as an R package at https://github.com/BioGenies/PlastoGram. The code used for described analyses is available at https://github.com/BioGenies/PlastoGram-analysis.