Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(965), p. 148, 2024

DOI: 10.3847/1538-4357/ad2c94

Links

Tools

Export citation

Search in Google Scholar

Detecting Gravitational Wave Bursts from Stellar-mass Binaries in the mHz Band

Journal article published in 2024 by Zeyuan Xuan ORCID, Smadar Naoz ORCID, Bence Kocsis ORCID, Erez Michaely ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The dynamical formation channels of gravitational wave (GW) sources typically involve a stage when the compact object binary source interacts with the environment, which may excite its eccentricity, yielding efficient GW emission. For the wide eccentric compact object binaries, the GW emission happens mostly near the pericenter passage, creating a unique, burst-like signature in the waveform. This work examines the possibility of stellar-mass bursting sources in the mHz band for future LISA detections. Because of their long lifetime (∼107 yr) and promising detectability, the number of mHz bursting sources can be large in the local Universe. For example, based on our estimates, there will be ∼3–45 bursting binary black holes in the Milky Way, with ∼102–104 bursts detected during the LISA mission. Moreover, we find that the number of bursting sources strongly depends on their formation history. If certain regions undergo active formation of compact object binaries in the recent few million years, there will be a significantly higher bursting source fraction. Thus, the detection of mHz GW bursts not only serves as a clue for distinguishing different formation channels, but also helps us understand the star formation history in different regions of the Milky Way.