Published in

Oxford University Press, Rheumatology Advances in Practice, 2(8), 2024

DOI: 10.1093/rap/rkae065

Links

Tools

Export citation

Search in Google Scholar

Targeting enhanced cell death represents a potential therapeutic strategy for VEXAS syndrome

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives To unravel the mechanisms underlying cell death in the vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome using peripheral blood samples and to assess the clinical value of this knowledge. Methods Nine patients undergoing treatment for VEXAS syndrome at Yokohama City University Hospital were included in this study. Monocytes and neutrophils were isolated from peripheral blood and then monocytes were differentiated into polarized macrophages. Viable cell counts, cell death assays and measurements of various indicators such as high mobility group box 1 (HMGB1) concentration, extracellular adenosine triphosphate (ATP) concentration, annexin V level and caspase 1, 3 and 7 activities were performed. Results Elevated cell death of monocytes and neutrophils was observed in VEXAS syndrome patients, as indicated by cultured cell counts and cell death assays. Annexin V assays and measurements of caspase 1, 3 and 7 activities suggested increased apoptosis and pyroptosis in these cells. Serum HMGB1 levels were significantly elevated in VEXAS syndrome patients and decreased after prednisolone (PSL) dose escalation. Monocytes and neutrophils from the VEXAS group exhibited heightened extracellular ATP secretion, which was significantly reduced by soluble PSL co-culture. Conclusion This study confirms increased cell death of monocytes and neutrophils and damage-associated molecular patterns in VEXAS syndrome, and these findings may be valuable for drug screening, therapeutic strategies and as biomarkers.