Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-47206-7

Links

Tools

Export citation

Search in Google Scholar

Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMonolithic integration of novel materials without modifying the existing photonic component library is crucial to advancing heterogeneous silicon photonic integrated circuits. Here we show the introduction of a silicon nitride etch stop layer at select areas, coupled with low-loss oxide trench, enabling incorporation of functional materials without compromising foundry-verified device reliability. As an illustration, two distinct chalcogenide phase change materials (PCMs) with remarkable nonvolatile modulation capabilities, namely Sb2Se3 and Ge2Sb2Se4Te1, were monolithic back-end-of-line integrated, offering compact phase and intensity tuning units with zero-static power consumption. By employing these building blocks, the phase error of a push-pull Mach–Zehnder interferometer optical switch could be reduced with a 48% peak power consumption reduction. Mirco-ring filters with >5-bit wavelength selective intensity modulation and waveguide-based >7-bit intensity-modulation broadband attenuators could also be achieved. This foundry-compatible platform could open up the possibility of integrating other excellent optoelectronic materials into future silicon photonic process design kits.