Published in

American Institute of Physics, Journal of Vacuum Science and Technology A, 6(41), 2023

DOI: 10.1116/6.0003055

Links

Tools

Export citation

Search in Google Scholar

Core-shell metallic nanotube arrays for highly sensitive surface-enhanced Raman scattering (SERS) detection

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Here, we demonstrate the application of highly ordered, periodic Ag/Au core-shell triangle nanotube arrays as an ultrasensitive and low-cost surface-enhanced Raman scattering (SERS) substrate for the first time. The arrays of core-shell nanotube, with an outer diameter of 1.5 μm, were fabricated using top-down wafer-scale lithography followed by sequential sputter deposition of Ag and Au. The SERS activity of various combinations of core-shell structures was evaluated. It was found that Ag-core nanotubes overlaid with the Au-shell resulted in the highest Raman intensity, where the enhancement factor for R6G as a probe molecule is determined to be 1.38 × 107. Meanwhile, the limit of detections for R6G and ketoprofen analytes was evaluated to be 10−10 and 10−6 M, respectively. Linear correlations between the SERS signal intensities and logarithmical scale of both analytes in different concentrations were also established, ranging 10−4–10−10 and 10−2–10−6 M for R6G and ketoprofen, respectively. The Raman R6G peak intensity mapping suggests our metal nanotube arrays act as effective plasmonic hotspots and, thus, are useful for SERS sensing applications.