Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-47044-7

Links

Tools

Export citation

Search in Google Scholar

Optics miniaturization strategy for demanding Raman spectroscopy applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRaman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA’s Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm−1 resolution within the 400–4000 cm−1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.