Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 5(166), p. 198, 2023

DOI: 10.3847/1538-3881/acf768

Links

Tools

Export citation

Search in Google Scholar

ELemental abundances of Planets and brown dwarfs Imaged around Stars (ELPIS). I. Potential Metal Enrichment of the Exoplanet AF Lep b and a Novel Retrieval Approach for Cloudy Self-luminous Atmospheres

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass ( 2.8 − 0.5 + 0.6 M Jup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We use petitRADTRANS to perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient ( d ln T / d ln P ) , a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2 μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determines T eff ≈ 800 K, log ( g ) ≈ 3.7 dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.