Published in

Advanced Physics Research, 2(3), 2023

DOI: 10.1002/apxr.202300065

Links

Tools

Export citation

Search in Google Scholar

Casimir‐Lifshitz Optical Resonators: A New Platform for Exploring Physics at the Nanoscale

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractThe Casimir‐Lifshitz force, FC − L, has become a subject of great interest to both theoretical and applied physics communities due to its fundamental properties and potential technological implications in emerging nano‐scale devices. Recent cutting‐edge experiments have demonstrated the potential of quantum trapping at the nano‐scale assisted by FC − L in metallic planar plates immersed in fluids through appropriate stratification of the inner dielectric media, opening up new avenues for exploring physics at the nano‐scale. This review article provides an overview of the latest results in Casimir‐Lifshitz based‐optical resonator schemes and their potential applications in fields such as microfluidic devices, bio‐nano and micro electromechanical systems (NEMS and MEMS), strong coupling, polaritonic chemistry, photo‐chemistry, sensing, and metrology. The use of these optical resonators provides a versatile platform for fundamental studies and technological applications at the nano‐scale, with the potential to revolutionize various fields and create new opportunities for research.