Published in

Proceedings of the 7th Int. Particle Accelerator Conf., (IPAC2016), p. Korea, 2016

DOI: 10.18429/jacow-ipac2016-mopow039

Links

Tools

Export citation

Search in Google Scholar

An Oscillator Configuration for Full Realization of Hard X-ray Free Electron Laser

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

An X-ray free electron laser can be built in an oscillator (XFELO) configuration by employing an X-ray cavity with Bragg mirrors such as diamond*. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac. The XFELO will provide stable, coherent, high-spectral-purity hard x-rays. In addition, portions of its output may be enhanced by the LCLS amplifier for stable pulses of ultrashort duration determined by the electron bunch length. Much progress has been made recently on the feasibility of an XFELO: Analytical and numerical methods have been developed to compute the performance of a harmonic XFELO. The energy spread requirement over a sufficient length of the bunch can be met by temporal shaping of the photo-cathode drive laser**. Experiments at the APS have shown that Be-compound refractive lenses are suitable for a low-loss focusing and that the synthetic diamond crystals can withstand the intense x-ray exposure, in accord with estimates based on molecular dynamics considerations***. A strain-free mounting of thin diamond crystal (< 100 microns) can be realized by shaping a thick diamond into a blind alley****.