Dissemin is shutting down on January 1st, 2025

Published in

Springer, La Radiologia Medica, 6(129), p. 901-911, 2024

DOI: 10.1007/s11547-024-01820-z

Links

Tools

Export citation

Search in Google Scholar

PSMA-positive prostatic volume prediction with deep learning based on T2-weighted MRI

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose High PSMA expression might be correlated with structural characteristics such as growth patterns on histopathology, not recognized by the human eye on MRI images. Deep structural image analysis might be able to detect such differences and therefore predict if a lesion would be PSMA positive. Therefore, we aimed to train a neural network based on PSMA PET/MRI scans to predict increased prostatic PSMA uptake based on the axial T2-weighted sequence alone. Material and methods All patients undergoing simultaneous PSMA PET/MRI for PCa staging or biopsy guidance between April 2016 and December 2020 at our institution were selected. To increase the specificity of our model, the prostatic beds on PSMA PET scans were dichotomized in positive and negative regions using an SUV threshold greater than 4 to generate a PSMA PET map. Then, a C-ENet was trained on the T2 images of the training cohort to generate a predictive prostatic PSMA PET map. Results One hundred and fifty-four PSMA PET/MRI scans were available (133 [68Ga]Ga-PSMA-11 and 21 [18F]PSMA-1007). Significant cancer was present in 127 of them. The whole dataset was divided into a training cohort (n = 124) and a test cohort (n = 30). The C-ENet was able to predict the PSMA PET map with a dice similarity coefficient of 69.5 ± 15.6%. Conclusion Increased prostatic PSMA uptake on PET might be estimated based on T2 MRI alone. Further investigation with larger cohorts and external validation is needed to assess whether PSMA uptake can be predicted accurately enough to help in the interpretation of mpMRI.