Published in

MDPI, Cancers, 23(15), p. 5612, 2023

DOI: 10.3390/cancers15235612

Links

Tools

Export citation

Search in Google Scholar

Targeting Metabolic Vulnerabilities to Overcome Prostate Cancer Resistance: Dual Therapy with Apalutamide and Complex I Inhibition

Journal article published in 2023 by Valentin Baumgartner ORCID, Dominik Schaer, Daniel Eberli ORCID, Souzan Salemi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Prostate cancer (PCa) often becomes drug-treatment-resistant, posing a significant challenge to effective management. Although initial treatment with androgen deprivation therapy can control advanced PCa, subsequent resistance mechanisms allow tumor cells to continue growing, necessitating alternative approaches. This study delves into the specific metabolic dependencies of different PCa subtypes and explores the potential synergistic effects of combining androgen receptor (AR) inhibition (ARN with mitochondrial complex I inhibition (IACS)). We examined the metabolic behaviors of normal prostate epithelial cells (PNT1A), androgen-sensitive cells (LNCaP and C4-2), and androgen-independent cells (PC-3) when treated with ARN, IACS, or a combination. The results uncovered distinct mitochondrial activities across PCa subtypes, with androgen-dependent cells exhibiting heightened oxidative phosphorylation (OXPHOS). The combination of ARN and IACS significantly curbed cell proliferation in multiple PCa cell lines. Cellular bioenergetics analysis revealed that IACS reduced OXPHOS, while ARN hindered glycolysis in certain PCa cells. Additionally, galactose supplementation disrupted compensatory glycolytic mechanisms induced by metabolic reprogramming. Notably, glucose-deprived conditions heightened the sensitivity of PCa cells to mitochondrial inhibition, especially in the resistant PC-3 cells. Overall, this study illuminates the intricate interplay between AR signaling, metabolic adaptations, and treatment resistance in PCa. The findings offer valuable insights into subtype-specific metabolic profiles and propose a promising strategy to target PCa cells by exploiting their metabolic vulnerabilities.