Published in

American Institute of Physics, The Journal of Chemical Physics, 12(159), 2023

DOI: 10.1063/5.0164372

Links

Tools

Export citation

Search in Google Scholar

Investigating the accuracy of density functional methods for molecules in electric fields

Journal article published in 2023 by Tarek Scheele ORCID, Tim Neudecker
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The use of oriented external electric fields (OEEFs) as a potential tool for catalyzing chemical reactions has gained traction in recent years. Electronic structure calculations using OEEFs are commonly done using methods based on density functional theory (DFT), but until now, the performance of DFT methods for calculating molecules in OEEFs had not been assessed in a more general scope. Looking at the accuracy of molecular geometries, electronic energies, and electric dipole moments compared to accurate coupled-cluster with perturbative triples data, we have investigated a wide variety of density functionals using different basis sets to determine how well the individual functionals perform on various types of chemical bonds. We found that most functionals accurately calculate geometries in OEEFs and that small basis sets are sufficient in many cases. Calculations of electronic energies show a significant error introduced by the OEEF, which the use of a larger basis set helps mitigate. Our findings show that DFT methods can be used for accurate calculations in OEEFs, allowing researchers to make full use of the advantages that they bring.