Published in

American Association for Cancer Research, Clinical Cancer Research, 2024

DOI: 10.1158/1078-0432.ccr-23-3110

Links

Tools

Export citation

Search in Google Scholar

Anti-EGFR antibody-drug conjugate carrying an inhibitor targeting CDK restricts triple-negative breast cancer growth

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Anti-EGFR antibodies show limited response in breast cancer, partly due to activation of compensatory pathways. Furthermore, despite clinical success of CDK4/6 inhibitors in hormone receptor-positive tumors, aggressive triple-negative breast cancers (TNBCs) are largely resistant due to CDK2/cyclin E expression, while free CDK2 inhibitors display normal tissue toxicity, limiting their therapeutic application. A cetuximab-based antibody drug conjugate (ADC) carrying a CDK inhibitor selected based on oncogene dysregulation, alongside patient subgroup stratification, may provide EGFR-targeted delivery. Experimental Design: Expression of G1/S-phase cell cycle regulators were evaluated alongside EGFR in breast cancer. We conjugated cetuximab with CDK inhibitor SNS-032, for specific delivery to EGFR-expressing cells. We assessed ADC internalization, and its anti-tumor functions in vitro and in orthotopically-grown basal-like/TNBC xenografts. Results: Transcriptomic (6173 primary, 27 baseline and matched post-chemotherapy residual tumors), scRNA-seq (150290 cells, 27 treatment-naïve tumors) and spatial transcriptomic (43 tumor sections, 22 TNBCs) analyses confirmed expression of CDK2 and its cyclin partners in basal-like/TNBCs, associated with EGFR. Spatiotemporal live-cell imaging and super-resolution confocal microscopy demonstrated ADC colocalization with late lysosomal clusters. The ADC inhibited cell cycle progression, induced cytotoxicity against high EGFR-expressing tumor cells and bystander killing of neighboring EGFR-low tumor cells, but minimal effects on immune cells. Despite carrying a small fraction of the drug, the ADC restricted EGFR-expressing spheroid and cell line/patient-derived xenograft tumor growth. Conclusions: Exploiting EGFR overexpression, and dysregulated cell cycle in aggressive and treatment-refractory tumors, a cetuximab-CDK inhibitor ADC may provide selective and efficacious delivery of cell cycle-targeted agents to basal-like/TNBCs, including chemotherapy-resistant residual disease.