Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-46886-5

Links

Tools

Export citation

Search in Google Scholar

Squeezing formaldehyde into C60 fullerene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe cavity inside fullerene C60 provides a highly symmetric and inert environment for housing atoms and small molecules. Here we report the encapsulation of formaldehyde inside C60 by molecular surgery, yielding the supermolecular complex CH2O@C60, despite the 4.4 Å van der Waals length of CH2O exceeding the 3.7 Å internal diameter of C60. The presence of CH2O significantly reduces the cage HOMO-LUMO gap. Nuclear spin-spin couplings are observed between the fullerene host and the formaldehyde guest. The rapid spin-lattice relaxation of the formaldehyde 13C nuclei is attributed to a dominant spin-rotation mechanism. Despite being squeezed so tightly, the encapsulated formaldehyde molecules rotate freely about their long axes even at cryogenic temperatures, allowing observation of the ortho-to-para spin isomer conversion by infrared spectroscopy. The particle in a box nature of the system is demonstrated by the observation of two quantised translational modes in the cryogenic THz spectra.