Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 16(12), p. 5172, 2023

DOI: 10.3390/jcm12165172

Links

Tools

Export citation

Search in Google Scholar

When Eating Intuitively Is Not Always a Positive Response: Using Machine Learning to Better Unravel Eaters Profiles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The aim of the present study was to identify eaters profiles using the latest advantages of Machine Learning approach to cluster analysis. Methods: A total of 317 participants completed an online-based survey including self-reported measures of body image dissatisfaction, bulimia, restraint, and intuitive eating. Analyses were conducted in two steps: (a) identifying an optimal number of clusters, and (b) validating the clustering model of eaters profile using a procedure inspired by the Causal Reasoning approach. Results: This study reveals a 7-cluster model of eaters profiles. The characteristics, needs, and strengths of each eater profile are discussed along with the presentation of a continuum of eaters profiles. Conclusions: This conceptualization of eaters profiles could guide the direction of health education and treatment interventions targeting perceptual and eating dimensions.