Published in

Springer, Neuroradiology, 9(65), p. 1333-1342, 2023

DOI: 10.1007/s00234-023-03190-1

Links

Tools

Export citation

Search in Google Scholar

Image quality of spectral brain computed tomography angiography using halved dose of iodine contrast medium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose Reduction in iodinated contrast medium (CM) dose is highly motivated. Our aim was to evaluate if a 50% reduction of CM, while preserving image quality, is possible in brain CT angiography (CTA) using virtual monoenergetic images (VMI) on spectral CT. As a secondary aim, we evaluated if VMI can salvage examinations with suboptimal CM timing. Methods Consecutive patients older than 18 years without intracranial stenosis/occlusion were included. Three imaging protocols were used: group 1, full CM dose; group 2, 50% CM dose suboptimal timing; and group 3, 50% CM dose optimized timing. Attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the internal carotid artery, M2 segment of the middle cerebral artery, and white matter for conventional images (CI) and VMI (40–200 keV). Qualitative image quality for CI and VMI (50 and 60 keV) was rated by 4 experienced reviewers. Results Qualitatively and quantitatively, VMI (40–60 keV) improved image quality within each group. Significantly higher attenuation and CNR was found for group 3 VMI 40–50 keV, with unchanged SNR, compared to group 1 CI. Group 3 VMI 50 keV also received significantly higher rating scores than group 1 CI. Group 2 VMI (40–50 keV) had significantly higher CNR compared to group 3 CI, but the subjective image quality was similar. Conclusion VMI of 50 keV with 50% CM dose increases qualitative and quantitative image quality over CI with full CM dose. Using VMI reduces non-diagnostic examinations and may salvage CTA examinations deemed non-diagnostic due to suboptimal timing.