Published in

SAGE Publications, Journal of Diabetes Science and Technology, 2023

DOI: 10.1177/19322968231185115

Links

Tools

Export citation

Search in Google Scholar

Real-World Performance of First- Versus Second-Generation Automated Insulin Delivery Systems on a Pediatric Population With Type 1 Diabetes: A One-Year Observational Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: The aim of this single-center observational study was to assess the real-world performance of first- and second-generation automated insulin delivery (AID) systems in a cohort of children and adolescents with type 1 diabetes over a one-year follow-up. Methods: Demographic, anamnestic, and clinical data of the study cohort were collected at the start of automatic mode. Data on continuous glucose monitoring metrics, system settings, insulin requirements, and anthropometric parameters at three different time points (start period, six months, 12 months) were retrospectively gathered and statistically analyzed. Results: Fifty-four individuals (55.6% of females) aged 7 to 18 years switching to AID therapy were included in the analysis. Two weeks after starting automatic mode, subjects using advanced hybrid closed-loop (AHCL) showed a better response than hybrid closed-loop (HCL) users in terms of time in range ( P = .016), time above range 180 to 250 mg/dl ( P = .022), sensor mean glucose ( P = .047), and glycemia risk index ( P = .012). After 12 months, AHCL group maintained better mean sensor glucose ( P = .021) and glucose management indicator ( P = .027). Noteworthy, both HCL and AHCL users achieved the recommended clinical targets over the entire study period. The second-generation AID system registered longer time spent with automatic mode activated and fewer shifts to manual mode at every time point ( P < .001). Conclusions: Both systems showed sustained and successful glycemic outcomes in the first year of use. However, AHCL users achieved tighter glycemic targets, without an increase of hypoglycemia risk. Improved usability of the device may also have contributed to optimal glycemic outcomes by ensuring better continuity of the automatic mode activation.