Published in

American Institute of Physics, Applied Physics Letters, 8(123), 2023

DOI: 10.1063/5.0152029

Links

Tools

Export citation

Search in Google Scholar

A human ear-inspired ultrasonic transducer (HEUT) for 3D localization of sub-wavelength scatterers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The proposed technology aims to enable 3D localization of scatterers using single element ultrasonic transducers, which are traditionally limited to 1D measurements. This is achieved by designing a bespoke acoustic lens with a spiral-shaped pattern similar to the human outer ear, a shape that has evolved for sound source localization. This lens breaks the surface symmetry of the transducer, allowing ultrasonic waves arriving from different directions to be encoded in a certain way that can later be decoded to extract directional information. By employing the mechanism of spatial-encoding of the received signals and decoding via signal processing, the location of sub-wavelength scatterers can be detected in 3D with a single measurement for sparsely distributed scatterers. The proposed technology is first verified through a simulation study, and then 3D printed acoustic lenses are used to demonstrate the 3D encoding functionality of the Human Ear-inspired Ultrasonic Transducer (HEUT) experimentally. A framework is created to localize scatterers in 3D by processing received signals acquired by a HEUT prototype. With this technology, a single transducer can obtain multi-dimensional information with a single pulse-echo measurement, reducing the number of elements required for performing 3D ultrasound localization. The proposed spatial-encoding and -decoding technology can be applied to other wave-based imaging methods to develop affordable, practical, and compact sensing devices.