American Institute of Physics, Applied Physics Letters, 16(124), 2024
DOI: 10.1063/5.0199052
Full text: Unavailable
Emerging nano-kirigami/origami technology enables the flexible transformations of 2D planar patterns into exquisite 3D structures in situ and has aroused great interest in the areas of nanophotonics and optoelectronics. This paper briefly reviews some milestone research and breakthrough progresses in nano-kirigami/origami from the aspects of stimuli approaches and application directions. Versatile stimuli for kirigami/origami, including capillary force, residual stress, mechanical force, and irradiation-induced stress, are introduced in the micro/nanoscale region. Appealing optical applications and reconfigurable schemes of nano-kirigami/origami structures are summarized, offering effective routes to realize tunable nanophotonic and optoelectronic devices. Future challenges and promising pathways are also envisioned, including design methods, innovative materials, multi-physics field driving, and reprogrammable devices.