Published in

American Meteorological Society, Journal of Climate, 17(36), p. 6111-6124, 2023

DOI: 10.1175/jcli-d-22-0736.1

Links

Tools

Export citation

Search in Google Scholar

Stratosphere–Troposphere Coupling during Sudden Stratospheric Warmings with Different North Atlantic Jet Response

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Sudden stratospheric warmings (SSWs) are extreme disruptions of the wintertime polar vortex that can alter the tropospheric weather for over 2 months. However, the reasons why only some SSWs have a tropospheric impact are not yet clear. This study analyses the tropospheric impact of SSWs over the Atlantic region as measured by the latitudinal displacement of the North Atlantic eddy-driven jet following SSWs. We use reanalysis data for the period 1950–2020 to examine differences in the stratospheric and tropospheric circulation for SSWs with an equatorward (EQ) or a poleward (POLE) shift. Our results show a stronger and more persistent Northern Annular Mode (NAM) signal in the lower stratosphere for EQ than for POLE, beginning 2 weeks before the onset date. In the troposphere, we find precursory signals of the Atlantic jet behavior over Siberia, consistent with previous studies, and also over the central North Pacific and central Europe. In particular, our results suggest that the noncanonical poleward jet shift response to SSWs is in part modulated by circulation anomalies over the central North Pacific, and that these are in turn connected to the cold phase of El Niño–Southern Oscillation. Further analysis of the enhanced predictability given by these precursors suggests that the sign of the lower-stratospheric NAM and the geopotential anomalies over the central North Pacific significantly affect the probability of having an EQ or POLE response of the Atlantic jet.