Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 13(13), p. 2291, 2023

DOI: 10.3390/diagnostics13132291

Links

Tools

Export citation

Search in Google Scholar

A Framework for Prediction of Oncogenomic Progression Aiding Personalized Treatment of Gastric Cancer

Journal article published in 2023 by Fahad M. Alotaibi ORCID, Yaser Daanial Khan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mutations in genes can alter their DNA patterns, and by recognizing these mutations, many carcinomas can be diagnosed in the progression stages. The human body contains many hidden and enigmatic features that humankind has not yet fully understood. A total of 7539 neoplasm cases were reported from 1 January 2021 to 31 December 2021. Of these, 3156 were seen in males (41.9%) and 4383 (58.1%) in female patients. Several machine learning and deep learning frameworks are already implemented to detect mutations, but these techniques lack generalized datasets and need to be optimized for better results. Deep learning-based neural networks provide the computational power to calculate the complex structures of gastric carcinoma-driven gene mutations. This study proposes deep learning approaches such as long and short-term memory, gated recurrent units and bi-LSTM to help in identifying the progression of gastric carcinoma in an optimized manner. This study includes 61 carcinogenic driver genes whose mutations can cause gastric cancer. The mutation information was downloaded from intOGen.org and normal gene sequences were downloaded from asia.ensembl.org, as explained in the data collection section. The proposed deep learning models are validated using the self-consistency test (SCT), 10-fold cross-validation test (FCVT), and independent set test (IST); the IST prediction metrics of accuracy, sensitivity, specificity, MCC and AUC of LSTM, Bi-LSTM, and GRU are 97.18%, 98.35%, 96.01%, 0.94, 0.98; 99.46%, 98.93%, 100%, 0.989, 1.00; 99.46%, 98.93%, 100%, 0.989 and 1.00, respectively.