Published in

American Astronomical Society, Astrophysical Journal, 2(965), p. 177, 2024

DOI: 10.3847/1538-4357/ad2fc1

Links

Tools

Export citation

Search in Google Scholar

A Channel to Form Fast-spinning Black Hole–Neutron Star Binary Mergers as Multimessenger Sources. II. Accretion-induced Spin-up

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In this work, we investigate an alternative channel for the formation of fast-spinning black hole–neutron star (BHNS) binaries, in which super-Eddington accretion is expected to occur in accreting BHs during the stable mass transfer phase within BH-stripped helium (BH–He-rich) star binary systems. We evolve intensive MESA grids of close-orbit BH–He-rich star systems to systematically explore the projected aligned spins of BHs in BHNS binaries, as well as the impact of different accretion limits on the tidal disruption probability and electromagnetic (EM) signature of BHNS mergers. Most of the BHs in BHNS mergers cannot be effectively spun up through accretion if the accretion rate is limited to ≲ 10 M ̇ Edd , where M ̇ Edd is the standard Eddington accretion limit. In order to reach high spins (e.g., χ BH ≳ 0.5), the BHs are required to be born less massive (e.g., ≲3.0 M ) in binary systems with initial periods of ≲0.2–0.3 days and accrete material at ∼ 100 M ̇ Edd . However, even under this high accretion limit, ≳6 M BHs are typically challenging to significantly spin up and generate detectable associated EM signals. Our population simulations suggest that different accretion limits have a slight impact on the ratio of tidal disruption events. However, as the accretion limit increases, the EM counterparts from the cosmological BHNS population can become bright overall.