Published in

IOS Press, Studies in Health Technology and Informatics, 2024

DOI: 10.3233/shti231116

Links

Tools

Export citation

Search in Google Scholar

Machine-Learning Based Risk Assessment for Cancer Therapy-Related Cardiac Adverse Events Among Breast Cancer Patients

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The study aims to develop machine-learning models to predict cardiac adverse events in female breast cancer patients who receive adjuvant therapy. We selected breast cancer patients from a retrospective dataset of the Taipei Medical University Clinical Research Database and Taiwan Cancer Registry between January 2004 and December 2020. Patients were monitored at the date of prescribed chemo- and/or -target therapies until cardiac adverse events occurred during a year. Variables were used, including demographics, comorbidities, medications, and lab values. Logistics regression (LR) and artificial neural network (ANN) were used. The performance of the algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total, 1321 patients (an equal 15039 visits) were included. The best performance of the artificial neural network (ANN) model was achieved with the AUC, precision, recall, and F1-score of 0.89, 0.14, 0.82, and 0.2, respectively. The most important features were a pre-existing cardiac disease, tumor size, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), cancer stage, and age at index date. Further research is necessary to determine the feasibility of applying the algorithm in the clinical setting and explore whether this tool could improve care and outcomes.