Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Supplement, 2(271), p. 58, 2024

DOI: 10.3847/1538-4365/ad2f28

Links

Tools

Export citation

Search in Google Scholar

Lithium Abundances from the LAMOST Medium-resolution Survey Data Release 9

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Lithium is a fragile but crucial chemical element in the Universe, and exhibits interesting and complex behaviors. Thanks to the mass of spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) medium-resolution survey (MRS), we can investigate the lithium abundances in a large and diverse sample of stars, which could bring vital help in studying the origin and evolution of lithium. In this work, we use the Li i 6707.8 Å line to derive the lithium abundance through a template-matching method. A catalog of precise lithium abundance is presented for 795,384 spectra corresponding to 455,752 stars from the LAMOST MRS Data Release 9. Comparing our results with those of external high-resolution references, we find good consistency with a typical deviation of σ A(Li) ∼ 0.2 dex. We also analyze the internal errors using stars that have multiple LAMOST MRS observations, which will reach as low as 0.1 dex when the signal-to-noise ratio of the spectra is >20. Besides, our result indicates that a small fraction of giant stars still exhibit a surprisingly high lithium content, and 967 stars are identified as Li-rich giants with A(Li) > 1.5 dex, accounting for ∼2.6% of our samples. If one takes into account the fact that nearly all stars deplete lithium during the main sequence, then the fraction of Li-rich stars may far exceed 2.6%. This new catalog covers a wide range of stellar evolutionary stages from pre-main sequence to giants, and will provide help to the further study of the chemical evolution of lithium.