Published in

Wiley, Advanced Functional Materials, 22(20), p. 3932-3940, 2010

DOI: 10.1002/adfm.201001274

Links

Tools

Export citation

Search in Google Scholar

Towards a universal method for the stable and clean functionalization of inert perfluoropolymer nanoparticles: exploiting photopolymerizable amphiphilic diacetylenes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highly fluorinated materials are being widely investigated due to a number of peculiar properties, which are potentially useful for various applications, including use as lubricants, anti-adhesive films, and substitutes for biological fluids for biomedical utilization. However, at present such potential is still poorly exploited. One of the major drawbacks that hampers the rapid development of nanoscale fluoro-hybrid devices is the remarkable inertness of perfluoropolymeric materials that lack reactive functionalities, as they do not offer any functional groups that can be employed to covalently anchor organic molecules on their surface. In this paper, a convenient method for the stable biofunctionalization of strongly unreactive perfluoropolymer nanoparticles (PnPs) is reported. PnPs are easily coated with newly synthesized asymmetric diacetylenic monomer compounds (ADMs), thanks to PnP's high propensity to interact with hydrophobic moieties. Once monomerically adsorbed onto PnPs, such suitably designed ADMs enable the formation of a robust polymeric shell around the perfluoroelastomer core via a clean UV-promoted localized photopolymerization. Given the peculiar optical characteristics of PnPs, the coating of the particles can be monitored step by step using light scattering, which also allows estimation of the fraction of reacted monomers by competitive adsorption with smaller particles. The potential of this method for the biofunctionalization of PnPs is demonstrated with representative proteins and carbohydrates. Among them, the extension to avidin-biotin technology may broaden the scope and applicability of this strategy to potentially a large number of molecules of biomedical interest. Making the unreactive reactive: A smart method for the biofunctionalization of strongly inert perfluoropolymer nanoparticles (PnPs) is presented, using a stable coating with novel diacetylenic compounds followed by clean UV photopolymerization to generate reactive functionalities on the PnP surface. This method further allows fine tuning of the amount of conjugated biomolecules, which can be sensitively and straightforwardly quantified. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.