Published in

MDPI, Nanomaterials, 20(13), p. 2798, 2023

DOI: 10.3390/nano13202798

Links

Tools

Export citation

Search in Google Scholar

The Tunable Electronic and Optical Properties of Two-Dimensional Bismuth Oxyhalides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Two-dimensional (2D) bismuth oxyhalides (BiOX) have attracted much attention as potential optoelectronic materials. To explore their application diversity, we herewith systematically investigate the tunable properties of 2D BiOX using first-principles calculations. Their electronic and optical properties can be modulated by changing the number of monolayers, applying strain, and/or varying the halogen composition. The band gap shrinks monotonically and approaches the bulk value, the optical absorption coefficient increases, and the absorption spectrum redshifts as the layer number of 2D BiOX increases. The carrier transport property can be improved by applying tensile strain, and the ability of photocatalytic hydrogen evolution can be obtained by applying compressive strain. General strain engineering will be effective in linearly tuning the band gap of BiOX in a wide strain range. Strain, together with halogen composition variation, can tune the optical absorption spectrum to be on demand in the range from visible to ultraviolet. This suggests that 2D BiOX materials can potentially serve as tunable novel photodetectors, can be used to improve clean energy techniques, and have potential in the field of flexible optoelectronics.