Published in

MDPI, International Journal of Molecular Sciences, 12(24), p. 9983, 2023

DOI: 10.3390/ijms24129983

Links

Tools

Export citation

Search in Google Scholar

QbD-Optimized, Phospholipid-Based Elastic Nanovesicles for the Effective Delivery of 6-Gingerol: A Promising Topical Option for Pain-Related Disorders

Journal article published in 2023 by Mohammed Ghazwani ORCID, Mohammed H. Alqarni ORCID, Umme Hani ORCID, Aftab Alam ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, elastic nanovesicles, constructed of phospholipids optimized by Quality by Design (QbD), release 6-gingerol (6-G), a natural chemical that may alleviate osteoporosis and musculoskeletal-related pain. A 6-gingerol-loaded transfersome (6-GTF) formulation was developed using a thin film and sonication approach. 6-GTFs were optimized using BBD. Vesicle size, PDI, zeta potential, TEM, in vitro drug release, and antioxidant activity were evaluated for the 6-GTF formulation. The optimized 6-GTF formulation had a 160.42 nm vesicle size, a 0.259 PDI, and a −32.12 mV zeta potential. TEM showed sphericity. The 6-GTF formulation’s in vitro drug release was 69.21%, compared to 47.71% for the pure drug suspension. The Higuchi model best described 6-G release from transfersomes, while the Korsmeyer–Peppas model supported non-Fickian diffusion. 6-GTF had more antioxidant activity than the pure 6-G suspension. The optimized transfersome formulation was converted into a gel to improve skin retention and efficacy. The optimized gel had a spreadability of 13.46 ± 4.42 g·cm/s and an extrudability of 15.19 ± 2.01 g/cm2. The suspension gel had a 1.5 μg/cm2/h ex vivo skin penetration flux, while the 6-GTF gel had 2.71 μg/cm2/h. Rhodamine B-loaded TF gel reached deeper skin layers (25 μm) compared to the control solution in the CLSM study. The gel formulation’s pH, drug concentration, and texture were assessed. This study developed QbD-optimized 6-gingerol-loaded transfersomes. 6-GTF gel improved skin absorption, drug release, and antioxidant activity. These results show that the 6-GTF gel formulation has the ability to treat pain-related illnesses effectively. Hence, this study offers a possible topical treatment for conditions connected to pain.