Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 22(15), p. 5459, 2023

DOI: 10.3390/cancers15225459

Links

Tools

Export citation

Search in Google Scholar

Dual-Level Augmentation Radiomics Analysis for Multisequence MRI Meningioma Grading

Journal article published in 2023 by Zongyou Cai, Lun Wong ORCID, Ye Wong, Hok Lam Lee, Kam Yau Li ORCID, Tiffany So ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Preoperative, noninvasive prediction of meningioma grade is important for therapeutic planning and decision making. In this study, we propose a dual-level augmentation strategy incorporating image-level augmentation (IA) and feature-level augmentation (FA) to tackle class imbalance and improve the predictive performance of radiomics for meningioma grading on Magnetic Resonance Imaging (MRI). Methods: This study recruited 160 consecutive patients with pathologically proven meningioma (129 low-grade (WHO grade I) tumors; 31 high-grade (WHO grade II and III) tumors) with preoperative multisequence MRI imaging. A dual-level augmentation strategy combining IA and FA was applied and evaluated in 100 repetitions in 3-, 5-, and 10-fold cross-validation. Results: The best area under the receiver operating characteristics curve of our method in 100 repetitions was ≥0.78 in all cross-validations. The corresponding cross-validation sensitivities (cross-validation specificity) were 0.72 (0.69), 0.76 (0.71), and 0.63 (0.82) in 3-, 5-, and 10-fold cross-validation, respectively. The proposed method achieved significantly better performance and distribution of results, outperforming single-level augmentation (IA or FA) or no augmentation in each cross-validation. Conclusions: The dual-level augmentation strategy using IA and FA significantly improves the performance of the radiomics model for meningioma grading on MRI, allowing better radiomics-based preoperative stratification and individualized treatment.