Published in

Copernicus Publications, Earth System Science Data, 4(16), p. 2123-2139, 2024

DOI: 10.5194/essd-16-2123-2024

Links

Tools

Export citation

Search in Google Scholar

Updated climatological mean ΔfCO<sub>2</sub> and net sea–air CO<sub>2</sub> flux over the global open ocean regions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The late Taro Takahashi (Lamont-Doherty Earth Observatory (LDEO), Columbia University) and colleagues provided the first near-global monthly air–sea CO2 flux climatology in Takahashi et al. (1997), based on available surface water partial pressure of CO2 measurements. This product has been a benchmark for uptake of CO2 in the ocean. Several versions have been provided since, with improvements in procedures and large increases in observations, culminating in the authoritative assessment in Takahashi et al. (2009a, b). Here we provide and document the last iteration using a greatly increased dataset (SOCATv2022) and determining fluxes using air–sea partial pressure differences as a climatological reference for the period 1980–2021 (Fay et al., 2023, https://doi.org/10.25921/295g-sn13). The resulting net flux for the open ocean region is estimated as -1.79±0.7 Pg C yr−1, which compares well with other global mean flux estimates. While global flux results are consistent, differences in regional means and seasonal amplitudes are discussed. Consistent with other studies, we find the largest differences in the data-sparse southeast Pacific and Southern Ocean.