Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 9(13), p. 1281, 2023

DOI: 10.3390/catal13091281

Links

Tools

Export citation

Search in Google Scholar

Flexibility and Function of Distal Substrate-Binding Tryptophans in the Blue Mussel β-Mannanase MeMan5A and Their Role in Hydrolysis and Transglycosylation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

β-Mannanases hydrolyze β-mannans, important components of plant and microalgae cell walls. Retaining β-mannanases can also catalyze transglycosylation, forming new β-mannosidic bonds that are applicable for synthesis. This study focused on the blue mussel (Mytilus edulis) GH5_10 β-mannanase MeMan5A, which contains two semi-conserved tryptophans (W240 and W281) in the distal subsite +2 of its active site cleft. Variants of MeMan5A were generated by replacing one or both tryptophans with alanines. The substitutions reduced the enzyme’s catalytic efficiency (kcat/Km using galactomannan) by three-fold (W281A), five-fold (W240A), or 20-fold (W240A/W281A). Productive binding modes were analyzed by 18O labeling of hydrolysis products and mass spectrometry. Results show that the substitution of both tryptophans was required to shift away from the dominant binding mode of mannopentaose (spanning subsites −3 to +2), suggesting that both tryptophans contribute to glycan binding. NMR spectroscopy and molecular dynamics simulations were conducted to analyze protein flexibility and glycan binding. We suggest that W240 is rigid and contributes to +2 subsite mannosyl specificity, while W281 is flexible, which enables stacking interactions in the +2 subsite by loop movement to facilitate binding. The substitutions significantly reduced or eliminated transglycosylation with saccharides as glycosyl acceptors but had no significant effect on reactions with alcohols.