Published in

MDPI, Scientia Pharmaceutica, 1(92), p. 9, 2024

DOI: 10.3390/scipharm92010009

Links

Tools

Export citation

Search in Google Scholar

Effect of Zoapatle (Montanoa tomentosa) on Inflammatory Markers in a Murine Model of Ventricular Hypertrophy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Zoapatle, a native plant utilized for centuries in traditional Mexican medicine, is abundantly found in Mesoamerica and northern South America. Pleiotropic effects of this genus have been recognized, primarily inducing alterations in smooth muscle contractility in animal models. The aim of this study was to evaluate the effect of Zoapatle on the hypertrophy index and the gene expression of TNF-α, IL-1β, NF-κB, STAT5, and the PRLR in the brain, left ventricle, and renal cortex of rats with isoproterenol-induced cardiac hypertrophy. Three groups were studied, the control group (n = 4), hypertrophy group (n = 4) and hypertrophy group treated with Zoapatle (n = 4). A ventricular hypertrophy model was developed with 150 mg/kg/day of isoproterenol intraperitoneally administered over two days with a 24 h interval between applications. Zoapatle was administered for 28 consecutive days (25 mg/kg). Gene expression was determined with RT-qPCR. Subsequently, a principal component analysis (PCA) was performed using the RNA expression variables. A notably reduced left ventricle mass index was observed in the Zoapatle group. Additionally, Zoapatle administration in cardiac hypertrophy demonstrated a significant decrease in the gene expression of TNF-α, IL-1B, STAT 5, and the PRLR. TNF-α and the transcription factor STAT5 exhibited a similar trend in both the left ventricle and renal cortex, suggesting a correlation with the inflammatory state in these tissues due to ventricular hypertrophy. The findings suggest that Zoapatle reverses the hypertrophy index in a hypertrophy model, concurrently reducing several proinflammatory mediators associated with the hypertrophy index.