Published in

MDPI, International Journal of Molecular Sciences, 10(24), p. 8468, 2023

DOI: 10.3390/ijms24108468

Links

Tools

Export citation

Search in Google Scholar

Engineering Human Cells Expressing CRISPR/Cas9-Synergistic Activation Mediators for Recombinant Protein Production

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recombinant engineering for protein production commonly employs plasmid-based gene templates for introduction and expression of genes in a candidate cell system in vitro. Challenges to this approach include identifying cell types that can facilitate proper post-translational modifications and difficulty expressing large multimeric proteins. We hypothesized that integration of the CRISPR/Cas9-synergistic activator mediator (SAM) system into the human genome would be a powerful tool capable of robust gene expression and protein production. SAMs are comprised of a “dead” Cas9 (dCas9) linked to transcriptional activators viral particle 64 (VP64), nuclear factor-kappa-B p65 subunit (p65), and heat shock factor 1 (HSF1) and are programmable to single or multiple gene targets. We integrated the components of the SAM system into human HEK293, HKB11, SK-HEP1, and HEP-g2 cells using coagulation factor X (FX) and fibrinogen (FBN) as proof of concept. We observed upregulation of mRNA in each cell type with concomitant protein expression. Our findings demonstrate the capability of human cells stably expressing SAM for user-defined singleplex and multiplex gene targeting and highlight their broad potential utility for recombinant engineering as well as transcriptional modulation across networks for basic, translational, and clinical modeling and applications.