Published in

Nature Research, Scientific Reports, 1(13), 2023

DOI: 10.1038/s41598-023-38963-4

Links

Tools

Export citation

Search in Google Scholar

Xanthone synthetic derivatives with high anticandidal activity and positive mycostatic selectivity index values

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWith the current massive increases in drug-resistant microbial infection as well as the significant role of fungal infections in the death toll of COVID-19, discovering new antifungals is extremely important. Natural and synthetic xanthones are promising derivatives, although only few reports have demonstrated their antifungal mechanism of action in detail. Newly synthetized by us xanthone derivative 44 exhibited strong antifungal activity against reference and fluconazole resistant C. albicans strains. Our results indicate that the most active compounds 42 and 44 are not substrates for fungal ABC transporters (Cdr1p and Cdr2p) and Mdr1p, the main representative of the major facilitator superfamily efflux pumps, membrane proteins that are responsible for the development of resistance. Moreover, fungicidal mode of action reduces the probability of persistent or recurrent infections and resistance development. In this light, the demonstrated killing activity of the examined derivatives is their undoubted advantage. Novel synthesized compounds exhibited moderate cytotoxicity against human cell lines, although the selectivity index value for human pathogenic strains remained favourable. Our results also indicate that novel synthetized compounds 42 and 44 with antifungal activity target yeast topoisomerase II activity. In summary, further validation of xanthones applicability as antifungals is highly valuable.