Published in

American Physical Society, Physical Review Letters, 22(132), 2024

DOI: 10.1103/physrevlett.132.220601

Links

Tools

Export citation

Search in Google Scholar

Phase-Sensitive Quantum Measurement without Controlled Operations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many quantum algorithms rely on the measurement of complex quantum amplitudes. Standard approaches to obtain the phase information, such as the Hadamard test, give rise to large overheads due to the need for global controlled-unitary operations. We introduce a quantum algorithm based on complex analysis that overcomes this problem for amplitudes that are a continuous function of time. Our method only requires the implementation of real-time evolution and a shallow circuit that approximates a short imaginary-time evolution. We show that the method outperforms the Hadamard test in terms of circuit depth and that it is suitable for current noisy quantum computers when combined with a simple error-mitigation strategy. Published by the American Physical Society 2024