Published in

MDPI, Energies, 9(16), p. 3706, 2023

DOI: 10.3390/en16093706

Links

Tools

Export citation

Search in Google Scholar

Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The degradation of solar photovoltaic (PV) modules is caused by a number of factors that have an impact on their effectiveness, performance, and lifetime. One of the reasons contributing to the decline in solar PV performance is the aging issue. This study comprehensively examines the effects and difficulties associated with aging and degradation in solar PV applications. In light of this, this article examines and analyzes many aging factors, including temperature, humidity, dust, discoloration, cracks, and delamination. Additionally, the effects of aging factors on solar PV performance, including the lifetime, efficiency, material degradation, overheating, and mismatching, are critically investigated. Furthermore, the main drawbacks, issues, and challenges associated with solar PV aging are addressed to identify any unfulfilled research needs. Finally, this paper provides new directions for future research, best practices, and recommendations to overcome aging issues and achieve the sustainable management and operation of solar energy systems. For PV engineers, manufacturers, and industrialists, this review’s critical analysis, evaluation, and future research directions will be useful in paving the way for conducting additional research and development on aging issues to increase the lifespan and efficiency of solar PV.