Published in

American Geophysical Union, Geophysical Research Letters, 22(50), 2023

DOI: 10.1029/2023gl106656

Links

Tools

Export citation

Search in Google Scholar

Using Tidally‐Driven Elastic Strains to Infer Regional Variations in Crustal Thickness at Enceladus

Journal article published in 2023 by Alexander Berne ORCID, Mark Simons ORCID, James T. Keane ORCID, Ryan S. Park ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractConstraining the spatial variability of the thickness of the ice shell of Enceladus (i.e., the crust) is central to our understanding of the internal dynamics and evolution of this small Saturnian moon. In this study, we develop a new methodology to infer regional variations in crustal thickness using measurements of tidally‐driven elastic strain that could be made in the future. As proof of concept, we recover thickness variations from synthetic finite‐element crustal models subjected to diurnal eccentricity tides. We demonstrate recovery of crustal thickness to within ∼2 km of true values across the crust with ∼10% error in derived spherical harmonic coefficients at degrees l ≤ 12. Our computed uncertainty is significantly smaller than the inherent ∼10 km ambiguity associated with crustal thickness derived solely from gravity and topography measurements. Therefore, future measurements of elastic strain can provide a robust approach to probe crustal structure at Enceladus.