Published in

American Geophysical Union, Journal of Geophysical Research: Planets, 1(129), 2024

DOI: 10.1029/2023je008054

Links

Tools

Export citation

Search in Google Scholar

The Global Shape, Gravity Field, and Libration of Enceladus

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractIn order to improve our understanding of the interior structure of Saturn's small moon Enceladus, we reanalyze radiometric tracking and onboard imaging data acquired by the Cassini spacecraft during close encounters with the moon. We compute the global shape, gravity field, and rotational parameters of Enceladus in a reference frame consistent with the International Astronomical Union's definition, where the center of the Salih crater is located at −5° East longitude. We recover a quadrupole gravity field with J3 and a forced libration amplitude of 0.091° ± 0.009° (3‐σ). We also compute a global shape model using a stereo‐photoclinometry technique with a global resolution of 500 m, although some local maps have higher resolutions ranging from 25 to 100 m. While our overall results are generally consistent with previous studies, we infer a thicker 27–33 km mean ice shell, a thinner 21–26 km mean ocean thickness, and a mean core density range of 2,270–2,330 kg/m3.