Published in

Optica, Optica, 5(11), p. 726, 2024

DOI: 10.1364/optica.515708

Links

Tools

Export citation

Search in Google Scholar

Dual-oscillator infrared electro-optic sampling with attosecond precision

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electro-optic sampling of infrared electric fields has set sensitivity and dynamic-range records in broadband molecular vibrational spectroscopy. Yet, in these works, the 1-second-scale single-trace acquisition time leads to intra-scan noise accumulation and restricts the throughput in measurements of multiple samples and of dynamic processes. We present a dual-laser-oscillator approach capturing 2800 mid-infrared waveforms per second by scanning the relative delay between the sampled waveform and the gate pulses using a modulated repetition-frequency lock. The new technique of electro-optic delay tracking (EODT) provides delay calibration with down to few-attosecond precision and provides a general route to high-precision dual-oscillator spectroscopy with picosecond delay ranges. Our work has immediate applications in, e.g., precision electric-field metrology and high-speed biosensing.