Published in

American Institute of Physics, Applied Physics Letters, 18(124), 2024

DOI: 10.1063/5.0200403

Links

Tools

Export citation

Search in Google Scholar

Topological semimetal interface resistivity scaling for vertical interconnect applications

Journal article published in 2024 by Nicholas A. Lanzillo ORCID, Utkarsh Bajpai ORCID, Ching-Tzu Chen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this work, we explore the electron scattering characteristics at interfaces between normal metals and topological semimetals in bulk as well as in thin film structures. We consider Cu/Ta and CoSi/Ta as representative metal/metal and topological semimetal/metal interface structures, respectively. For bulk interface structures, we find that metal/topological semimetal interfaces have roughly 20× higher interfacial resistivity than normal metal/metal interfaces primarily due to the low electronic density of states, the Fermi level in bulk topological semimetals. For thin films, we find that normal metal/metal interfacial resistivity shows a weak dependence on film thickness and is generally close to the corresponding bulk value. Interfaces between surface-conduction dominated topological semimetals, such as CoSi and normal metals in thin films, however, show decreasing interfacial resistivity with decreasing film thickness. This apparent reduction in interface resistivity originates from the surface-dominated transport, where the total transmission across the interface varies little with reduced film thickness, yielding an effective increase in interface conductivity at smaller dimensions. These results suggest that topological semimetals may be attractive candidates for next-generation interconnect materials with critically small dimensions where interfaces with other metals are ubiquitous.