Dissemin is shutting down on January 1st, 2025

Published in

Wiley, European Journal of Neuroscience, 2024

DOI: 10.1111/ejn.16345

Links

Tools

Export citation

Search in Google Scholar

Narcissus reflected: Grey and white matter features joint contribution to the default mode network in predicting narcissistic personality traits

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDespite the clinical significance of narcissistic personality, its neural bases have not been clarified yet, primarily because of methodological limitations of the previous studies, such as the low sample size, the use of univariate techniques and the focus on only one brain modality. In this study, we employed for the first time a combination of unsupervised and supervised machine learning methods, to identify the joint contributions of grey matter (GM) and white matter (WM) to narcissistic personality traits (NPT). After preprocessing, the brain scans of 135 participants were decomposed into eight independent networks of covarying GM and WM via parallel ICA. Subsequently, stepwise regression and Random Forest were used to predict NPT. We hypothesized that a fronto‐temporo parietal network, mainly related to the default mode network, may be involved in NPT and associated WM regions. Results demonstrated a distributed network that included GM alterations in fronto‐temporal regions, the insula and the cingulate cortex, along with WM alterations in cerebellar and thalamic regions. To assess the specificity of our findings, we also examined whether the brain network predicting narcissism could also predict other personality traits (i.e., histrionic, paranoid and avoidant personalities). Notably, this network did not predict such personality traits. Additionally, a supervised machine learning model (Random Forest) was used to extract a predictive model for generalization to new cases. Results confirmed that the same network could predict new cases. These findings hold promise for advancing our understanding of personality traits and potentially uncovering brain biomarkers associated with narcissism.