Published in

MDPI, Stresses, 3(3), p. 570-585, 2023

DOI: 10.3390/stresses3030040

Links

Tools

Export citation

Search in Google Scholar

An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance

Journal article published in 2023 by Krishna Kumar ORCID, Pratima Debnath, Sailendra Singh ORCID, Navin Kumar ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Secondary metabolites, such as phenols and salicylic, play a crucial role in the regulation of development and tolerance mechanisms against a wide range of stresses. During adverse conditions such as biotic and abiotic stresses, plants induce the biosynthesis of phenolic compounds to provide tolerance. Phenolics are secondary aromatic metabolites synthesized through the shikimate/phenylpropanoid pathway or polyketide acetate/malonate pathway, which produce monomeric and polymeric phenolics. Phenolic compounds in plants not only take part in preventing stresses but also in regulating physiological activities. These compounds significantly regulate both below- and above-ground defense mechanisms. Plants synthesize thousands of phenolic compounds throughout their evolution to survive in changing environments. Environmental factors, such as high light, cold, drought, heavy metals, etc., increase the accumulation of phenolics to neutralize any toxic effects. This review focuses on the biosynthesis of phenolic compounds and their updated studies against abiotic stresses.