Published in

American Society of Clinical Oncology, JCO Clinical Cancer Informatics, 8, 2024

DOI: 10.1200/cci.23.00150

Links

Tools

Export citation

Search in Google Scholar

Development of an Automatic Rule-Based Algorithm for the Detection of Ovarian Cancer Recurrence From Electronic Health Records

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE As the onset of cancer recurrence is not explicitly recorded in the electronic health record (EHR), a high volume of manual chart review is required to detect the cancer recurrence. This study aims to develop an automatic rule-based algorithm for detecting ovarian cancer (OC) recurrence on the basis of minimally preprocessed EHR data. METHODS The automatic rule-based recurrence detection algorithm (Auto-Recur), using notes on image reading (positron emission tomography-computed tomography [PET-CT], CT, magnetic resonance imaging [MRI]), biomarker (CA125), and treatment information (surgery, chemotherapy, radiotherapy), was developed to detect the first OC recurrence. Auto-Recur contains three single algorithms (images, biomarkers, treatments) and hybrid algorithms (combinations of the single algorithms). The performance of Auto-Recur was assessed using sensitivity, specificity, and accuracy of the recurrence time detected. The recurrence-free survival probabilities were estimated and compared with the retrospective chart review results. RESULTS The proposed Auto-Recur considerably reduced human resources and time; it saved approximately 1,340 days when scaled to 100,000 patients compared with the conventional retrospective chart review. The hybrid algorithm on the basis of a combination of image, biomarker, and treatment information was the most efficient (sensitivity: 93.4%, specificity: 97.4%) and precisely captured recurrence time (average time error: 8.5 days). The estimated 3-year recurrence-free survival probability (44%) was close to the estimates by the retrospective chart review (45%, log-rank P value = .894). CONCLUSION Our rule-based algorithm effectively captured the first OC recurrence from large-scale EHR while closely approximating the recurrence-free survival estimates obtained by conventional retrospective chart reviews. The study findings facilitate large-scale EHR analysis, enhancing clinical research opportunities.