Published in

arXiv, 2022

DOI: 10.48550/arxiv.2212.10175

Links

Tools

Export citation

Search in Google Scholar

Spin-resolved spectroscopy using a quantum dot defined in InAs 2DEG

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We realize a device, based on InAs two-dimensional electron gas proximitized by superconducting Al, which allows a single quantum dot level to be used as a spectrometer of the density of states in a nanowire. Applying a magnetic field parallel to the plane of the device causes the levels of the dot to split, enabling spin resolved spectroscopy. Using this method, we are able to study the spin and charge polarization of the allowed transport through sub-gap states which form in the nanowire and evolve with varying magnetic field and gate voltage.