Published in

MDPI, International Journal of Molecular Sciences, 6(25), p. 3124, 2024

DOI: 10.3390/ijms25063124

Links

Tools

Export citation

Search in Google Scholar

Extracellular Vesicles from Cerebrospinal Fluid of Leptomeningeal Metastasis Patients Deliver MiR-21 and Induce Methotrexate Resistance in Lung Cancer Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Leptomeningeal metastasis (LM) is a common and fatal complication of advanced non-small cell lung cancer (NSCLC) caused by the spread of malignant cells to the leptomeninges and cerebrospinal fluid (CSF). While intra-CSF methotrexate (MTX) chemotherapy can improve prognosis, eventual MTX resistance deters continued chemotherapy. Recent studies have shown that increased miRNA-21 (miR-21) expression in the CSF of patients with LM after intraventricular MTX-chemotherapy is associated with poor overall survival; however, the molecular mechanisms underlying this resistance are poorly understood. Here, we confirm, in 36 patients with NSCLC-LM, that elevated miR-21 expression prior to treatment correlates with poor prognosis. MiR-21 overexpression or sponging results in a corresponding increase or decrease in MTX resistance, demonstrating that cellular miR-21 expression correlates with drug resistance. MiR-21-monitoring sensor and fluorescent extracellular vesicle (EV) staining revealed that EV-mediated delivery of miR-21 could modulate MTX resistance. Moreover, EVs isolated from the CSF of LM patients containing miR-21 could enhance the cell proliferation and MTX resistance of recipient cells. These results indicate that miR-21 can be transferred from cell-to-cell via EVs and potentially modulate MTX sensitivity, suggesting that miR-21 in CSF EVs may be a prognostic and therapeutic target for overcoming MTX resistance in patients with NSCLC-LM.