Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 5(18), p. e0285470, 2023

DOI: 10.1371/journal.pone.0285470

Links

Tools

Export citation

Search in Google Scholar

Could secondary flows have made possible the cross-strait transport and explosive invasion of Rugulopteryx okamurae algae in the Strait of Gibraltar?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Presently, the Strait of Gibraltar is undergoing an unprecedented invasion of the alien algaRugulopteryx okamuraeof North Pacific origin. According to the scarce literature, the algae first settled in the south shore, probably following commercial exchanges with French ports where it was accidentally introduced together with Japanese oysters imported for mariculture. There is no certainty, however, that the algae first colonized the south shore of the Strait and, from there, spread to the north. It could well have been the opposite. Whatever the case, it spread all over the Strait and surrounding areas with amazing rapidity. Human-mediated vectors (algae attached to ship hulls or fishing nets, for example) can be behind the spread from the shore initially settled to the algae-free shore on the opposite side. But it could also have happened by means of hydrodynamic processes without direct human intervention. This possibility is assessed in this paper by revisiting historical current meter profiles collected in the Strait of Gibraltar searching for secondary cross-strait flows. All the stations present an intermediate layer of northward cross-strait velocity near the interface of the mean baroclinic exchange along with a surface layer above of southward velocity, whose lower part also overlaps the interface zone. The first one would back the south-to-north transport of algal fragments, the second one, the north-to south. In both cases, algae must reach the depth of the interface. The vertical velocity field in the area, which far exceeds the small sedimentation velocity of the algae, allows their vertical displacements throughout the water column. Its endurance to survive under the weak or no light conditions that will prevail during the cross-strait transport and its capability of reactivating the metabolism after this unfavorable period, offers chances for colonizing the opposite shore. Therefore, the propagation of the algae by hydrodynamic processes, without human intervention, cannot be ruled out.