Published in

Springer Nature [academic journals on nature.com], The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 10(17), p. 1680-1692, 2023

DOI: 10.1038/s41396-023-01477-y

Links

Tools

Export citation

Search in Google Scholar

Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction

Journal article published in 2023 by Sinje Neukirchen ORCID, Inês A. C. Pereira ORCID, Filipa L. Sousa ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth’s history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.