Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Angewandte Chemie International Edition, 35(62), 2023

DOI: 10.1002/anie.202304493

Links

Tools

Export citation

Search in Google Scholar

Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro‐Rotaxanes” from High‐Molecular‐Weight Axle and Wheel Components

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRotaxanes consisting of a high‐molecular‐weight axle and wheel components (macro‐rotaxanes) have high structural freedom, and are attractive for soft‐material applications. However, their synthesis remains underexplored. Here, we investigated macro‐rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc‐PDMSs) in silicone networks. mc‐PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω‐norbornenyl‐functionalized PDMS. Silicone networks were prepared in the presence of 10–60 wt % mc‐PDMS, and the trapping efficiency of mc‐PDMS was determined. In contrast to monocyclic PDMS, mc‐PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro‐rotaxanes. The damping performance of a 60 wt % mc‐PDMS‐blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro‐rotaxanes are promising as non‐leaching additives for network polymers.