Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Review of Scientific Instruments, 9(94), 2023

DOI: 10.1063/5.0159548

Links

Tools

Export citation

Search in Google Scholar

MilliKelvin microwave impedance microscopy in a dry dilution refrigerator

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Microwave impedance microscopy (MIM) is a near-field imaging technique that has been used to visualize the local conductivity of materials with nanoscale resolution across the GHz regime. In recent years, MIM has shown great promise for the investigation of topological states of matter, correlated electronic states, and emergent phenomena in quantum materials. To explore these low-energy phenomena, many of which are only detectable in the milliKelvin regime, we have developed a novel low-temperature MIM incorporated into a dilution refrigerator. This setup, which consists of a tuning-fork-based atomic force microscope with microwave reflectometry capabilities, is capable of reaching temperatures down to 70 mK during imaging and magnetic fields up to 9 T. To test the performance of this microscope, we demonstrate microwave imaging of the conductivity contrast between graphite and silicon dioxide at cryogenic temperatures and discuss the resolution and noise observed in these results. We extend this methodology to visualize edge conduction in Dirac semi-metal cadmium arsenide in the quantum Hall regime.