Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Briefings in Bioinformatics, 1(25), 2023

DOI: 10.1093/bib/bbad509

Links

Tools

Export citation

Search in Google Scholar

Genotype imputation accuracy and the quality metrics of the minor ancestry in multi-ancestry reference panels

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Large-scale imputation reference panels are currently available and have contributed to efficient genome-wide association studies through genotype imputation. However, whether large-size multi-ancestry or small-size population-specific reference panels are the optimal choices for under-represented populations continues to be debated. We imputed genotypes of East Asian (180k Japanese) subjects using the Trans-Omics for Precision Medicine reference panel and found that the standard imputation quality metric (Rsq) overestimated dosage r2 (squared correlation between imputed dosage and true genotype) particularly in marginal-quality bins. Variance component analysis of Rsq revealed that the increased imputed-genotype certainty (dosages closer to 0, 1 or 2) caused upward bias, indicating some systemic bias in the imputation. Through systematic simulations using different template switching rates (θ value) in the hidden Markov model, we revealed that the lower θ value increased the imputed-genotype certainty and Rsq; however, dosage r2 was insensitive to the θ value, thereby causing a deviation. In simulated reference panels with different sizes and ancestral diversities, the θ value estimates from Minimac decreased with the size of a single ancestry and increased with the ancestral diversity. Thus, Rsq could be deviated from dosage r2 for a subpopulation in the multi-ancestry panel, and the deviation represents different imputed-dosage distributions. Finally, despite the impact of the θ value, distant ancestries in the reference panel contributed only a few additional variants passing a predefined Rsq threshold. We conclude that the θ value substantially impacts the imputed dosage and the imputation quality metric value.